
How Do You Do What You Do
When You're a z196 CPU?

Bob Rogers
IBM Corporation
rrrogers@us.ibm.com

SHARE in Anaheim

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks,

see www.ibm.com/legal/copytrade.shtml IBM, IBM logo, BladeCenter*, Build Forge*, CICS*, ClearCase*, ClearQuest*, DB2*, DB2 Connect, DB2 Universal Database,

Domino, Enterprise Storage Server*, eServer, GDPS*, Geographically Dispersed Parallel Sysplex, HiperSockets, Lotus*, NetView*, OMEGAMON*, OS/390*, OS/400*,

Parallel Sysplex*, pSeries*, RACF*, Rational*, RequisitePro*, Sametime*, SiteProtector, System i, System p, System Storage, System x, System z, System z9*, System

z10, Tivoli*, TotalStorage*, WebSphere*, z9, z10,z/OS*, z/VM*, and zSeries*.

The following are trademarks or registered trademarks of other companies

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries

Linux is a registered trademark of Linux Torvalds

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Intel is a registered trademark of Intel Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

NOTES:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that

any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the

workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have

achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject

to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the

performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use.

The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of

the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those

Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

Important Disclaimer

• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED
FOR INFORMATIONAL PURPOSES ONLY.

• WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED.

• IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION
OR ANY OTHER DOCUMENTATION.

• NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR
SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM
(OR ITS AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR
LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE
LICENSE AGREEMENT GOVERNING THE USE OF IBM
SOFTWARE.

Topics

• Overview of instruction Processing

• What’s different about z10

• Superscalar Grouping

• The Pipeline and its Hazards

• What’s different about z196

• Branch Prediction

• Cache Topology

• Coprocessors

• TLB2 and Large Pages

Conceptual View of Execution

• Instructions are executed in the order they are seen.
• Every instruction completes before the following instruction begins.
• Instructions take a varying amount of time.
• Instructions have direct and immediate access to main storage.

instruction instruction instruction instruction

time

But, this is an illusion.

Pipeline View of Instructions

• Individual instructions are really a sequence of dependent activities,
varying by instruction:

for example: A R1,D2(X2,B2)

for example: CLC D1(L,B1),D2(B2)

for example: UPT (Update Tree)

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand1
Address

Operand1
Fetch

Operand2
Address

Operand2
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Execute Instruction as an "internal subroutine" (millicode)

Pipeline View of Instructions

• Each stage in the execution of an instruction is implemented by distinct
components so that execution can be overlapped.

time

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Instruction

Fetch

Instruction

Decode

Operand

Address

Operand

Fetch
Execute

Putaway

Result

Pipeline stalls and rejects

• Address Generation Interlock (AGI)

• Waiting for the results of a previous instruction to compute an
operand address

• z10 and z196 have AGI bypasses that makes the results of Load
Address and some Load instructions available before Putaway

• A group (on z10) or single instruction (on z196) is stalled in the
decode/issue unit until interlock is resolvable to avoid pipeline reject
later

• Operand Store Compare (OSC)

• Waiting to re-fetch a recently modified operand

• The data is unavailable while in the “store queue” waiting to be
updated in L1 cache.

Pipeline stalls and rejects

• Instruction Fetch Interlock (IFI)

• reloading instructions as a result of stores into the instruction
stream (actually anywhere in the same cache line)

• causes pipeline flush, clearing decoded instructions and refetching
of instruction cache line (very costly)

• Branch Misprediction
• branching (or not branching) in a way other than the processor has

guessed.

• z10 and z196 have complex branch prediction logic

• relative branches have a lower penalty for incorrect prediction

• untaken branches don’t need to be predicted

• “code straightening” is a good idea

Superscalar multiple instruction overlap

• A Superscalar processor can process multiple instructions simultaneously
because it has multiple units for each stage of the pipeline. But, the apparent
order of execution is still maintained.

time

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway

Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instructio
n Fetch

Instructio
n Decode

Operand
Address

Operand
Fetch

Execute
Putaway

Result

Superscalar Grouping Rules on z10

• Most single-cycle instructions are “superscalar”

• Instruction groups contain 1 or 2 superscalar instructions

• First or Last instruction can be a branch instruction

• Instruction groups are held in decode dispatch unit to
avoid pipeline hazards like AGI and OSC

• Some instructions that were superscalar on z9 are not
superscalar in z10

Instruction Scheduling for In-Order Execution

Original Code Sequence

7 instruction groups and 10 cycles AGI delay
AGI seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 |

<4> 02 L @04,FW(,@04) | 03 ST @04,XFORS

04 LG @05,TOPPTR |

<2> 05 LG @09,RTTOP(,@05) |

<2> 06 ST @04,RSISIZE(,@09) | 07 SLR @02,@02

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

<2> 10 LH @08,RDITYPE(,@02) |

Reordered Code Sequence

5 instruction groups and 6 cycles AGI delay
AGI seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 | 04 LG @05,TOPPTR

<2> 05 LG @09,RTTOP(,@05) | 07 SLR @02,@02

<2> 02 L @04,FW(,@04) | 06 ST @04,RSISIZE(,@09)

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

<2> 03 ST @04,XFORS | 10 LH @08,RDITYPE(,@02)

The IBM System z10 compared to z9

• z10 has a radically different instruction processor
• high frequency processor

• 4.4 GHz vs 1.7GHz (2.5x)

• much longer instruction pipeline
• 14 stages vs 6 stages

• different type of instruction pipeline
• Rejecting pipeline vs stalling pipeline
• Reject-recycle cost about 9 cycles

• still performs in-order execution

• still favors RX instructions

System z10 Instruction Pipeline (partial)

D1 D2 D3 G1 G2 G3I0

I1

I2

I3

I4

B0

B1

B2

B3

B4

RF EX P1 P2 P3

A1 A2 A3A0

Branch redirection
FlushSurprise Branch

Instruction
fetch pipeline

Instruction decode/dispatch

Branch
resolution

Address
Generation

Operand
Formatting

Load forwarding

FX result forwarding

Dispatch Simple
fixed
point

Simple
load

High frequency is great, but….
• There are some negative affects cause by the short cycle time.

For example:
• Some instructions can no longer be done in the shorter cycle time

and now take more than one cycle
• Most instructions that involve sign propagation (e.g. LH) are no longer

single cycle

• Keeping the pipeline fed with instructions and data is very
challenging
• Memory access seem to take longer when measured in instruction

cycles.
• i-cache and d-cache size reduced to retain low latency at high

frequency.

• Some pipeline hazards are more costly
• Longer pipeline causes more cycles lost on reject/recycle and branch

mispredict

• More cases cause reject/recycle rather than stall

The IBM System z196 compared to z10

• z196 continues evolution high frequency and performance
• Higher frequency

• 5.2 GHz vs 4.4 GHz

• Variable length instruction pipeline
• 15 to 17 stages vs 14 stages (fixed point)

• Out-of-Order vs In-Order execution
• Instruction queue of 40 instructions
• Up to 72 instructions in flight

• RX-type instruction no longer being favored more than RISC-like
instructions
• However, simple RX instruction have some benefits in instruction path-

length with the dual issue design of issue queue

• Decode up to 3 instructions/cycle vs only 2
• Execute up to 5 instructions/cycle vs only 2

z196 Microprocessor Pipeline

RISC
execution
units

IDU = instruction decode unit

D1

G1

G2 dispatch

decode

group

M0

M1

M2

S0 S1 S2

cam

map

que write

out of order execution

wake issue
age
mtrx

GR
RF

reg
read

AG D$

agen

D$ FM

format

WB Fin

write
back

LSUs

EX CC WB Fin

FXUs

N0

N1

N2

N3

R0

R1

R2

R3

R4

C
h
e
c
k
 p

o
in

t
c
o
m

p
le

ti
o
n

XF

FPR

RF

F0 F1 F4 F5 F6 F7F2 F3 WB Fin

BFU

DFU

F1 F2 WB Fino o o

3
instructions

3 instructions

F8

D2

AG D$ D$ FM WB Fin

EX CC WB Fin

STQ

ISU = instruction sequencing unit

Issue Q

64KB IIII$
IIIIfetch Branch

Direction /
Target

Prediction
IIIIregs

Decode, crack,
group, map

Age Matrix

Dependency
Matrix

Global
Completion

Table

GR phys regs

LSU
pipe

0

LSU
pipe

1

FXU
pipe0

FXU
pipe1

FPR phys regs

BFU
DFU

Out
Of

Order

In
Order

completion

Arch.mapper
unified
mapper

Issue Q

Age Matrix

Dependency
Matrix

128KB D$

z196 Microprocessor Core

3 Instruction buffers

LSU = load/store unit

FXU = fixed point unit

BFU, DFU = binary and decimal

floating point units

New on z196

•Instruction Cracking
•Breaking more complex instructions into simpler micro-
ops

•Register Renaming
•Using a larger set of physical registers to enable multiple
logical copies of the same architected registers

•Out-of-Order Execution (OOO)
•Executing instructions before their normal execution order
once any dependencies have been resolved

•Micro-ops from cracked instructions can be scheduled
independently

• Unconditional at decode
• Scratch register or condition code (cc) used to pass intermediate results from one uop to another

• E.g. compare and swap load/ store pretest + compare
scratch cc

conditional store

• Conditionally at decode based on operand length
• E.g. short (8 bytes or less) move character load

store

• Conditionally at decode based on operand overlap
• E.g. exclusive OR with identical source operands store data transfer

store replicate

• At issue
• E.g. RX add load

RR (reg-reg) add

Instruction Cracking Flavors

crack

crack

crack

crack

Ex. of Cracking, Renaming and OOO

•Identify dependencies between instructions
•speculatively execute instructions out of order
•uses extra physical registers to enable OOO without getting
incorrect results

L R1,A

A R1,B

ST R1,C

L R1,X

A R1,Y

ST R1,Z

L P1,A

L P2,B

AR P2,P1

ST P2,C

L P3,X

L P4,Y

AR P4,R4

ST P4,Z

L P1,A / L P2,B

L P3,X / L P4,Y / AR P2,P1

AR P4,R4/ ST P2,C

ST P4,Z

crack

rename

group

Branch pattern

Branch Prediction on z196
• The Branch Target Table remembers branches

• BTB is indexed by part of the instruction address [halfword within 4K page]
• Multiple states – taken, strongly taken, not taken, strongly not taken, use PHT
• There is a Branch Pattern recording the last 12 branch directions (0/1)
• A Pattern History Table is indexed by the Branch Pattern

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

Program Memory (halfwords)
Red “B”s are taken; Black “B”s are not taken

Branch Target Table
2048 x 4

(indexed by 48-58 of IA)

z/Architecture branch instructions and targets
can be on any halfword

BTB has a row for each halfword in a page

T/W102F210290

T/S1016e1015C

NT/W2104E21032

PHT100282108C

………………

NT/S103101028C

History

state

Branch
target
address

Branch
instruction
address

P
a
tt

e
rn

 H
is

to
ry

 T
a
b

le
4
0
9
6
 e

n
ti
e
s
,

2
 b

its
 w

id
e
,
4
 s

ta
te

s

xxxxxxxxx
12-bits

23

z10 EC
CPU

4.4 GHz

Caches

L1 private 64k i, 128k d

L1.5 private 3 MB

L2 shared 48 MB / book

book interconnect: star

z196
CPU

5.2 GHz

Out-Of-Order execution

Caches

L1 private 64k i, 128k d

L2 private 1.5 MB

L3 shared 24 MB / chip

L4 shared 192 MB / book

book interconnect: star

...

Memory

L4 Cache

L2

CPU1

L1

L3 Cache

L2

CPU4

L1... L2

CPU1

L1

L3 Cache

L2

CPU4

L1...

...

Memory

L2 Cache

L1.5

CPU

L1

L1.5

CPU

L1

L1.5

CPU

L1

z196 vs z10 hardware comparison

Compression and Cryptography Accelerator

• Accelerator unit shared by 2 cores
• Independent compression engines
• Shared cryptography engines
• Co-operates with core millicode
• Direct path into core store buffers

• Data compression engine
• Static dictionary compression/expansion
• Dictionary size up to 64KB (8K entries)

• Local 16KB caches for dictionary data

• Up to 8.8 GB/sec expansion
• Up to 240 MB/sec compression

• Cryptography engine
• 290-960 MB/sec bulk encryption rate

• DES (DEA, TDEA2, TDEA3)
• SHA-1 (160 bit)
• SHA-2 (256, 384, 512 bit)
• AES (128, 192, 256 bit)

• Enhancements on z196
• Enhancements for new NIST standard
• Complemented prior ECB and CBC symmetric cipher

modes with XTS, OFB, CTR, CFB, CMAC and CCM
• New primitives (128b Galois Field multiply) for GCM

Core 0 Core 1

IB IBOB OBTLBTLB

2nd Level
Cache

Cmpr
Exp

Cmpr
Exp

16K 16K

Crypto
Cipher

Crypto
Hash

CRSTE
128 entries

CRSTE TLB2
(512 entries)

PTE TLB2
(3072 entries)

search argument
for CAM purgeAttribute

CAM

valid-bit tag-bits LPAR guest2_ind

valid-bit tag-bits LPAR guest2_ind

valid-bit tag-bits

LPAR guest2_ind

CRSTE
128 entries

PTE
256 entries

CRSTE
128 entries

CRSTE
128 entries

virt.mach.
(SDID)

0

32

Host (HO) /////// ///////

�On z10, TLB1 misses on Large Pages that hit in TLB2 can be resolved without accessing
a page table entry
�On z196, there is a separate TLB1 for 1MB entries so there is no need at all to create 4K
entries for large pages

z10 TLB2 and Large Pages

–TLB2 introduced in z990

–TLB2 contains Combined Region

and Segment Table Entries

(CRSTEs) and 4K pagetable
entries

–TLB1 still contains only 4K entries

–CRSTEs are used to avoid
accessing Region and Segment
Tables but Page Table must still be
accessed for 4K pages to create a
TLB1 entry

–CRSTE can be used directly for
1MB pages to create a TLB1 entry

PTE
256 entries

PTE
256 entries

PTE
256 entries

New Instructions on z10

•Compare and Branch type
•To help on condition code limitation

•Compare and Trap
•null pointer checks

•Some new relative instructions
•Load Relative and Store Relative and “execute” relative

•Immediate Instructions
•Move Immediate and compare immediate (16, 32, 64 bits)
•Add Immediate (arithmetic and logical)

•Fill necessary holes in latest architecture
•Some Multiply Immediate, some Multiply long displacement

•Powerful bit manipulation instructions
•Rotate Then (AND, OR, XOR, INSERT) Bits

0
1

15

+

compare compare
branch conditional load
load instruction X
instruction X

New Instructions on z196

• High word extension (30 instructions)
• General register high word independently addressable
• Gives software 32 word-sized registers
• Add/subtracts, compares, rotates, loads/stores

• New atomic ops

• Load and “arithmetic” (ADD, AND, XOR, OR)
• (Old) storage location value loaded into GR

• Arithmetic result overwrites value at storage location

• Load Pair Disjoint
• Load from two different storage locations into even-odd register pair

• Condition code indicates whether fetches interlocked

• Conditional load, store, register copy

• Based on condition code

• Used to eliminate unpredictable branches
Old code New code

• z/Architecture has rich CISC architecture with 1079 instrs
• 75 assists usable by millicode (vertical microcode) only

• Most complex 219 instructions are executed by millicode
• Another 24 instructions are conditionally executed by millicode

• 211 medium complexity instructions cracked at decode into 2 or more uops
• 269 RX instructions cracked at issue � dual issued

• RX have one storage operand and one register operand
• 16 storage-storage ops executed by LSU sequencer
• Remaining z/Architecture instructions are RISC-like and map to single uop

z196 Instruction Set Architecture Summary

1079

Total

Instructions75 assists
1004

z/Arch

1079

219

Milli-

coded

24 conditional

millicoded

219

Milli

coded

340

“RISC”

211

cracked269

dual

issue

16 storage

sequencer

