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Conceptual View of Execution

• Instructions are executed in the order they are seen.
• Every instruction completes before the following instruction begins.
• Instructions take a varying amount of time.
• Instructions have direct and immediate access to main storage.

instruction instruction instruction instruction

time

But, this is an illusion.



Pipeline View of Instructions

• Individual instructions are really a sequence of dependent activities, 
varying by instruction:

for example: A  R1,D2(X2,B2) 

for example: CLC  D1(L,B1),D2(B2) 

for example: UPT   (Update Tree)
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Pipeline View of Instructions

• Each stage in the execution of an instruction is implemented by distinct 
components so that execution can be overlapped.
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Pipeline stalls and rejects

• Address Generation Interlock (AGI)

• Waiting for the results of a previous instruction to compute an 
operand address

• z10 and z196 have AGI bypasses that makes the results of Load 
Address and some Load instructions available before Putaway

• A group (on z10) or single instruction (on z196) is stalled in the 
decode/issue unit until interlock is resolvable to avoid pipeline reject 
later

• Operand Store Compare (OSC)

• Waiting to re-fetch a recently modified operand

• The data is unavailable while in the “store queue” waiting to be 
updated in L1 cache.



Pipeline stalls and rejects

• Instruction Fetch Interlock (IFI)

• reloading instructions as a result of stores into the instruction 
stream (actually anywhere in the same cache line)

• causes pipeline flush, clearing decoded instructions and refetching
of instruction cache line  (very costly)

• Branch Misprediction
• branching (or not branching) in a way other than the processor has 

guessed.

• z10 and z196 have complex branch prediction logic

• relative branches have a lower penalty for incorrect prediction

• untaken branches don’t need to be predicted

• “code straightening” is a good idea



Superscalar multiple instruction overlap

• A Superscalar processor can process multiple instructions simultaneously 
because it has multiple units for each stage of the pipeline. But, the apparent 
order of execution is still maintained.
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Superscalar Grouping Rules on z10

• Most single-cycle instructions are “superscalar”

• Instruction groups contain 1 or 2 superscalar instructions

• First or Last instruction can be a branch instruction

• Instruction groups are held in decode dispatch unit to 
avoid pipeline hazards like AGI and OSC

• Some instructions that were superscalar on z9 are not 
superscalar in z10



Instruction Scheduling for In-Order Execution

Original Code Sequence

7 instruction groups and 10 cycles AGI delay 
AGI seq instruction text           | seq instruction text

01  LLGT  @04,XFORNP31             |                        

<4> 02  L     @04,FW(,@04)             | 03  ST    @04,XFORS 

04  LG    @05,TOPPTR               |                        

<2> 05  LG    @09,RTTOP(,@05)          |                        

<2> 06  ST    @04,RSISIZE(,@09)        | 07  SLR   @02,@02      

08  ST    @02,RSIPREV(,@09)        | 09  LG    @02,RDIPTR64 

<2> 10  LH    @08,RDITYPE(,@02)        |                        

Reordered Code Sequence

5 instruction groups and 6 cycles AGI delay
AGI seq instruction text           | seq instruction text

01  LLGT  @04,XFORNP31             | 04  LG    @05,TOPPTR   

<2> 05  LG    @09,RTTOP(,@05)          | 07  SLR   @02,@02      

<2> 02  L     @04,FW(,@04)             | 06  ST    @04,RSISIZE(,@09) 

08  ST    @02,RSIPREV(,@09)        | 09  LG    @02,RDIPTR64 

<2> 03  ST    @04,XFORS                | 10  LH    @08,RDITYPE(,@02)             



The IBM System z10 compared to z9

• z10 has a radically different instruction processor
• high frequency processor

• 4.4 GHz vs 1.7GHz (2.5x)

• much longer instruction pipeline
• 14 stages vs 6 stages

• different type of instruction pipeline
• Rejecting pipeline vs stalling pipeline
• Reject-recycle cost about 9 cycles

• still performs in-order execution

• still favors RX instructions



System z10 Instruction Pipeline (partial)
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High frequency is great, but….
• There are some negative affects cause by the short cycle time. 

For example:
• Some instructions can no longer be done in the shorter cycle time 

and now take more than one cycle
• Most instructions that involve sign propagation (e.g. LH) are no longer 

single cycle

• Keeping the pipeline fed with instructions and data is very 
challenging
• Memory access seem to take longer when measured in instruction 

cycles.
• i-cache and d-cache size reduced to retain low latency at high 

frequency.

• Some pipeline hazards are more costly
• Longer pipeline causes more cycles lost on reject/recycle and branch 

mispredict

• More cases cause reject/recycle rather than stall



The IBM System z196 compared to z10

• z196 continues evolution high frequency and performance
• Higher frequency

• 5.2 GHz vs 4.4 GHz

• Variable length instruction pipeline
• 15 to 17 stages vs 14 stages (fixed point) 

• Out-of-Order vs In-Order execution
• Instruction queue of 40 instructions
• Up to 72 instructions in flight

• RX-type instruction no longer being favored more than RISC-like 
instructions
• However, simple RX instruction have some benefits in instruction path-

length with the dual issue design of issue queue

• Decode up to 3 instructions/cycle vs only 2
• Execute up to 5 instructions/cycle vs only 2



z196 Microprocessor Pipeline
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Issue Q
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New on z196

•Instruction Cracking
•Breaking more complex instructions into simpler micro-
ops

•Register Renaming
•Using a larger set of physical registers to enable multiple 
logical copies of the same architected registers

•Out-of-Order Execution (OOO)
•Executing instructions before their normal execution order 
once any dependencies have been resolved

•Micro-ops from cracked instructions can be scheduled 
independently



• Unconditional at decode
• Scratch register or condition code (cc) used to pass intermediate results from one uop to another

• E.g. compare and swap                           load/ store pretest + compare  
scratch cc

conditional store                        

• Conditionally at decode based on operand length
• E.g. short (8 bytes or less) move character                     load

store

• Conditionally at decode based on operand overlap
• E.g.  exclusive OR with identical source operands               store data transfer

store replicate

• At issue
• E.g.  RX add                             load

RR (reg-reg) add

Instruction Cracking Flavors

crack

crack

crack

crack



Ex. of Cracking, Renaming and OOO

•Identify dependencies between instructions
•speculatively execute instructions out of order
•uses extra physical registers to enable OOO without getting 
incorrect results
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Branch pattern

Branch Prediction on z196
• The Branch Target Table remembers branches

• BTB is indexed by part of the instruction address [halfword within 4K page]
• Multiple states – taken, strongly taken, not taken, strongly not taken, use PHT
• There is a Branch Pattern recording the last 12 branch directions (0/1)
• A Pattern History Table is indexed by the Branch Pattern
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z10 EC
CPU
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Compression and Cryptography Accelerator

• Accelerator unit shared by 2 cores
• Independent compression engines
• Shared cryptography engines
• Co-operates with core millicode
• Direct path into core store buffers

• Data compression engine
• Static dictionary compression/expansion
• Dictionary size up to 64KB (8K entries)

• Local 16KB caches for dictionary data

• Up to 8.8 GB/sec expansion
• Up to 240 MB/sec compression

• Cryptography engine
• 290-960 MB/sec bulk encryption rate

• DES (DEA, TDEA2, TDEA3)
• SHA-1 (160 bit)
• SHA-2 (256, 384, 512 bit)
• AES (128, 192, 256 bit)

• Enhancements on z196
• Enhancements for new NIST standard
• Complemented prior ECB and CBC symmetric cipher 

modes with XTS, OFB, CTR, CFB, CMAC and CCM
• New primitives (128b Galois Field multiply) for GCM

Core 0 Core 1

IB IBOB OBTLBTLB
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16K 16K

Crypto
Cipher

Crypto 
Hash



CRSTE
128 entries

CRSTE TLB2
(512 entries)

PTE TLB2
(3072 entries)

search argument 
for CAM purgeAttribute 

CAM  
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Host (HO) /////// ///////

�On z10, TLB1 misses on Large Pages that hit in TLB2 can be resolved without accessing 
a page table entry
�On z196, there is a separate TLB1 for 1MB entries so there is no need at all to create 4K 
entries for large pages

z10 TLB2 and Large Pages

–TLB2 introduced in z990

–TLB2 contains Combined Region 

and Segment Table Entries

(CRSTEs) and 4K pagetable
entries

–TLB1 still contains only 4K entries

–CRSTEs are used to avoid 
accessing Region and Segment 
Tables but Page Table must still be 
accessed for 4K pages to create a 
TLB1 entry

–CRSTE can be used directly for 
1MB pages to create a TLB1 entry

PTE
256 entries

PTE
256 entries

PTE
256 entries



New Instructions on z10

•Compare and Branch type
•To help on condition code limitation

•Compare and Trap 
•null pointer checks

•Some new relative instructions
•Load Relative and Store Relative and “execute” relative

•Immediate Instructions
•Move Immediate and compare immediate (16, 32, 64 bits)
•Add Immediate (arithmetic and logical)

•Fill necessary holes in latest architecture
•Some Multiply Immediate, some Multiply long displacement

•Powerful bit manipulation instructions
•Rotate Then (AND, OR, XOR, INSERT) Bits
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load instruction X
instruction X

New Instructions on z196

• High word extension (30 instructions)
• General register high word independently addressable
• Gives software 32 word-sized registers
• Add/subtracts, compares, rotates, loads/stores 

• New atomic ops

• Load and “arithmetic” (ADD, AND, XOR, OR)
• (Old) storage location value loaded into GR

• Arithmetic result overwrites value at storage location

• Load Pair Disjoint
• Load from two different storage locations into even-odd register pair

• Condition code indicates whether fetches interlocked

• Conditional load, store, register copy

• Based on condition code 

• Used to eliminate unpredictable branches
Old code               New code 



• z/Architecture has rich CISC architecture with 1079 instrs
• 75 assists usable by millicode (vertical microcode) only

• Most complex 219 instructions are executed by millicode
• Another 24 instructions are conditionally executed by millicode

• 211 medium complexity instructions cracked at decode into 2 or more uops
• 269 RX instructions cracked at issue � dual issued

• RX have one storage operand and one register operand
• 16 storage-storage ops executed by LSU sequencer
• Remaining z/Architecture instructions are RISC-like and map to single uop

z196 Instruction Set Architecture Summary
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